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Abstract

The paper provides a complete characterization of the equilibria for a class of
"preemption" games when time is continuous and information is complete. It
allows for asymmetric payoffs and an arbitrary time horizon. It extends the
analyses of earlier authors to include a class of games in which players move

according to a continuous distribution over some interval of the game.



1. Introduction

The returns to a firm from adopting a new technology frequently depend
on when it adopts relative to other firms. Most studies focus on markets in
which firms have an incentive to adopt preemptively, but where the preferred
outcome is to wait and either adopt at some later date or never adopt. The
critical issue is the extent to which firms can coordinate their adoption dates
and earn some of the profits from delayed adoption. In the models considered
by Farrell and Saloner (1986), Fudenberg and Tirole (1985), and Gilbert and
Harris (1984), firms- generally fail to obtain any of these gains. The incentive
for preemption leads to a Bertrand—like outcome in which one firm is certain
to adopt as soon as the gains from preemption are positive. In some instances,
the models also possess equilibria in which the firms are able to achieve the
preferred outcome. Fudenberg and Tirole note that when -the gains from
preemption are small, there is a continuum of equilibria in which firms adopt
jointly at some later date. Farrell and Saloner obtain a similar result, only in
their case, the preferred outcome is that neither firm ever adopts.

In this paper we characterize the Nash equilibria for a broad class of
these preemption games with complete information. We characterize the
conditions under which the Bertrand—like outcomes and the joint adoption
outcomes are equilibria. We then establish that, in some instances, there is a
continuum of mixed strategy equilibria in which the players wait with
probability 1 until some time t, after which they move according to a strictly
increasing, continuous distribution function. The possibility of this additional
class of equilibria has generally been overlooked in the existing literature.

In the games we analyze, two players must independently choose a time
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t € [0,]] at which to move first. The essential restrictions are that (i) the

return to moving first (leading) increases with time and (ii) the return to
leading always exceeds the return to following or tying on the open interval
(0,1).
0 and 1.

We permit a wide range of assumptions on the return functions at times

In many of the applications of this game, the: same model admita

several plausible alternative assumptions on the payoffs at these points. Our

analysis allows us fo examine the sensitivity of equilibrium outcomes as we

consider different variations of a model. We address this point in more detail

in Section 7.

Many of these
to a game of timin#
leading is again ing
Karlin

decreasing.

limiting case of the

models have a common structure which is closely related
known as the "noisy" duel.' In that game, the return to
reasing with time, but the return to following is strictly

(1953) has studied non-zero sum "noisy" duels as a

"silent” duel, and provided a characterization of min—max

solutions to the ga#ne. ‘Pitchik (1982) has recently extended the analysis to

Nash equilibria. In each case, these authors find that the equilibria of the

"noisy" duel, if any| exist, consists of pure strategies. The main difference in
the preemption gam%s described above is that the return to following may also
be increasing. As we have noted, this may result in a richer class of Nash

equilibria.

The paper is |organized as follows. In Section 2, we introduce the

assumptions which define the preemption game. In Section 3, we derive the
properties of the equilibrium strategies on the interior of the strategy space. In
Sections 4 and 5, we develop the initial and terminal conditions which
equilibrium strategies must satisfy.

Section 6 contains a complete

characterization of the equilibrium outcomes. In Section 7 we discuss the
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relation between our results and the adoption models considered in the

literature.

2. The Game

We begin with a general description of the game. Two players, a and b,
must decide when to make a single move at some time t between 0 and 1.°
The payoffs are determined as soon as one player moves. In what follows, o
refers to an arbitrary player and 8 to the other player. If player « moves first
at some time t, he is called the leader and earns a return L (t). I player g
moves first .at. time .t, then player o« is called the follower and earns a return
F,(t). If both players move simultaneously at time t, the return to player « is
S.(t). We will refer to S (1) as the terminal return.

In the strategic form of the game, a pure strategy for player o is a time
t, € [0,1] at which he plans to move given that neither player moves before
that time. Given a strategy pair (t,t,) € {0,1]x[0,1], the payoff to player o is

then defined as follows:

L.(t,) if t, <t

« [
Pa(t'a?t'b) = Sa(ta) if ta = t'b
Fltg) if  t, > t,

2.1 Assumptions on the Payoff Functions
Our first assumption guarantees that the payoff functions are continuous

everywhere but on the diagonal,

Al L, and F_ are continuous functions on [0,1].
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Our next assumption characterizes the class of preemption games we wish

to study.’®

A2 (i) L,(t) > F(t) for t e (0,1);
(ii) L(t) > S (t) for t € [0,1);

(iii) L(t) is strictly increasing for t € [0,1);

Condition (i) requires that the return to leading at any time t > 0
strictly exceed the return to following at time t. We do not rule out the
possibility that L_(0) = F_(0) nor the possibility that F (1) = L,(1).
Condition (ii), however, requires that the return to leading strictly exceed the
return to tying at all times less than 1. Combined with condition (iii), these -
conditions imply that, at any time t < 1, each player prefers to move before
the other but prefers to delay that action as long as possible. Note, however,
that, since S, is not necessarily continuous, our assumptions impose no
restrictions on the relation of S (1) to either L (1) or F_(1).

As we indicated in the introduction, Assumptions A1 and A2 represent a
"reduced form" of many models of the adoption of a new technology. Time 0
corresponds to the first time at which it may be optimal for either firm to
adopt. Typically, the underlying model includes an initial interval in which the
return to leading is increasing but is less than the return to following. As long
as the return to moving simulataneously is less than the return to leading, it is
never optimal to move in this interval, and so it can be deleted without loss.
Time 1 represents the first instant where the return functions do not satisfy the

conditions of Assumption A2. Either the return to leading begins to fall or the
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returns to following or tying become at least as large as the return to leading.
The terminal return, S (1), then corresponds to the equilibrium payoff to the
continuation game which begins at that point.

In Figure 1, we have illustrated three possible relations between the
return functions. As required by Assumption A2, in each case L, lies above F,
over the open interval (0,1) with L_ strictly increasing throughout. The
distinctive features of Figure 1(a) is that at time O the return to leading is
equal to the return to following, while at time 1 the return to leading is above
the return to following. Figure 1(b) illustrates a game in which, initially, the
return to leading exceeds the return to following, but the difference converges
to 0 as time approaches 1. In this case, S (1) may lie between F_(0) and
L_(0). Figure 1(c) illustrates a game where the return to following is equal to
the return to leading at both time 0 and time 1. Although not shown, in each
case, 5, can be any function which lies below L, throughout the half open

interval [0,1). Any value of S (1) is permissible.

2.2 Equilibrinm

It is important for our results to permit agents to randomize across pure
strategies. A mixed strategy for player a is a probability distribution function
G, on [0,1].5 If we extend the domain of the payoff functions to the set of
all pairs of mixed strategies in the obvious way, then a strategy combination
(G.,G}) is an equilibrium if P_(G,G;) = P (G,G}) for all mixed
strategies G, a = a,b and 8 » o

For the remainder of the paper, (G,,G,) will refer to an equilibrium

combination, and q_(t) will denote the probability with which player &« moves
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at exactly time t. We will repeatedly use the fact that if (G,,G,) is a pair of
equilibrium distributions, then P (t,G;) = sup,, ,,P,(v,G;) for any t in the

support of G,.

3. Equilibrium Restrictions on the Interval (0,1)

In this section, we focus on the properties of the equilibrium strategies in
the interior of the unit interval.

We begin by establishing that the supports of the strategies of both
players must have the same interior (over the interval during which neither

player moves with. probability 1).

LEMMA 3.1: Suppose limutha(t) = G, (t,) < 1 for t, < t,. Then

Gﬂ(tl—s) = limthGﬂ(tz) for some 5§ > 0.

PROOF: Suppose 1imt.1’t.1Gcz(t') = G,{t,) <1 for t;, < t,. Then for any
t € [t,,t,), it follows from Assumption A2 that player § prefers to wait until
time t, to move gince there is no chance that player o will move in the

intervening interval:

Pﬂ(tZ’Ga)_Pﬂ(t’Ga) = [Lg(tz)"Lﬁ(t)][l_Ga(tz)] > 0.

Therefore, if t, = 0, the lemma is immediate. So suppose t, > 0. Then,
for any ¢ > 0 sufficiently small, there is an arbitrarily small 6§ > 0 such
that |G (t)-G_(t,)] < ¢ for any t € [t,—&,t,). It then follows from

Assumptions Al and A2 that, for t € [t,—6,t,),
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P, (t,G,)—P,(t,G,) = [F,(t)—S,(t)]q,(t) + [72[F4(s)—L,(t)]dG (s)
+ [Lglty)—Ly(8)][1-G,(t,)]
= ofe)+o(e)+[Ly(t;) ~Ly(8)][1-G,(t,)]

> 0.

We conclude that player g prefers moving at time t, to any time

t € [t,—6,5,). Q.E.D.

The next Lemma rules out any mass points in the interior of the interval
-of times which may be reached with positive probability.
LEMMA 3.2: Suppose t € (0,1). Then lim, Gy(v) < 1 implies q.(t) = 0.
PROOF: Suppose, for some t € (0,1), that gq_(t) > 0. Then, for any
€ > 0, there is an (arbitrarily small) & > 0 such that (i) L(t—8)—L,(t+5)
< ¢, and (ii) q (t—6) = 0 with G_(t+6)-G_ (t—5) < q(t)+e. It then

follows from Assumptions Al and A2 that, for ¢ and § chosen sufficiently

small,

Po(t,Go)—Py(t—6,G,) = [5.5[Fyls)—Ly(t—6)ldG,(s) + [S4(t)—Ly(t—5)]q,(t)
1 [Lp(8)—Ls(t—6)][1-G,(t)]
= o(€) + [S(t)—Ly(t—8)lq,(t) + o(e) < O

Similarly, for v € (t,t+5],

P,(v,G,)—Py(t—5,G) = [7_,[F ,(s)~L,(t—5)|dG(s)
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+ [Sp(v)=Ly(t—8)la,(v) + [Ls(v)—Ly(t—6)][1-G,(v)]
fad [Fﬂ(t)_Lﬂ(t—a)][qa(t)+0(€)] + o(e) + o(e) < 0.

Consequently, player 8 will never move in the interval [t,t+&§]. This implies
- that  lim,,,G,(v) = G,(t+6). Then, if lim,, G,(v) < 1, Lemma 3.1 implies

that q.(t) = 0, contradicting the hypothesis that q.(t) > 0.  Q.E.D.

If G, is strictly increasing over some interval, then we may use the fact
that player « must be indifferent between moving at any two times in the
interval to explicitly- eharacterize the equilibrium strategy of player 8 over this
interval in terms of the return functions L_ and F_.

For 0 =<t, < t < 1, define

Li(tort) = exp(f} [dL,(v)/(Fo(v)-L(v)]}-°

LEMMA 3.3: Suppose G, is strictly increasing over the interval [t,t,]. Then,

for t; > 0 and t & (tpt,), Gylt) < 1 implies

(31) G)(0) = 1 — [1-G,(t)IL(tot)-

PROOF: Suppose that G, is strictly increasing over the interval [t,t,].
Then, since G,(t) < 1 for t < t, it follows from Lemma 3.2 that G, is

continuous on (0,t). Therefore, for any t € [tyt,),

(3.2) 0 = P (t,G,) — P,(t,,G))

= S5 [Fu(v) L (t)ldGs(v) + [1-Gy(t)][Ly(t)—L,(t,)]
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Since G, and L, are both monotonic and L, is continuous, we may apply the

formula for integration by parts (Rudin (1964), p.122) to obtain

(8.3) [1-CO)][Ly(0)-Ly(t)] = [T 1-CydL() — ¥ [L(V)-L(tc)]dG,()-

Substituting (3.3) into (3.2) and rearranging terms then yields, for all

t e [toat1)=

v dL (v
(3.4) J'to (L ()-F W16, | 1(1%:(3) - La(v)i(Fz(v)] =0

But, since [L (v)-F_(v)][1-G,(v)] > 0 for all v & [t,t], equation (3.4)

implies that

J1,4G,(v)/[1-G,(v)] = ~ J1, QL (V)/[F ()= L (v)]-

Employing a change of variable (Rudin (1964), p.122—124), we may then apply

the fundamental theorem of calculus to obtain:
logl1-G,()] = log[1—C,{t,)] + J%dL,(v)/[F (v)-L,(v)].
Taking antilogs and rearranging terms then yields equation (3.1). Q.E.D.

Note that, if L  is continuously differentiable, then equation (3.1) is

simply the solution to the differential equation
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G; (6)/[1-Gy(t)] = L (6)/[L(6)—F,(t)]

with initial condition G,(t,) € [0,t]. In this case, G, has a continuous density
function g, over the interval (t5,).
We establish next that if neither player moves with probability 1 at time

0, then the game cannot end with certainty until time 1.

LEMMA 3.4: Suppose G,(0) < 1. Then G,0) < 1 implies G,t) < 1

for t < 1.

PROOF: Let t = sup{t = O: G, (t) <1 for a = ab} be the earliest time
by which one of the players has moved with certainty. The lemma is
equivalent to the requirement that t e (0,1). Suppose 0 < t < 1.

We will show first that the strategy of one of the players must have a
mass point at t. Suppose not. Then, for some player 3, G, is strictly
increasing over an interval (t',t) and lim,,;Gy(t) = 1. Then Lemma 3.3
combined with Assumption A2 implies G, is strictly increasing over the interval
(t',ﬁ). Applying Lemma 3.3 again, it then follows from Assumption A2 that
lim,,;Gy(t) = 1 — [1-Gy(t')]I,(t",t) < 1. A contradiction.

But if qu(t) > O, then Lemma 3.2 implies that lim,,;G(t) = 1. The
definition of t then implies that G_ is strictly increasing over some interval

(t',f). It then follows from Assumption A2 and Lemma 3.3 that

lim,,;:G,(t) < 1. This contradiction proves the lemma. Q.E.D.

Define
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' - inf{t < 1: G, is strictly increasing on (t,1] for @ = a,b} u {1}.

Given any strategy combination in which neither player moves with probability
1 before time 1, t* is the end of the last interval during which one of the
players moves with probability 0. Otherwise, it is set equal to 1. Combining
Lemmata 3.1 to 3.4, we can show that, unless one of the players moves with

. . *
probability 1 at time O, neither player ever moves in the interval {0,t ).

LEMMA 3.5: Suppose G_(0) < 1. Then
(i) Gt) = q,(0) for 0 <t <t and

(i) G,t) =1 — [1-q(O)]L,(t"t) for t* <t < L

PROOF: Suppose that q,{0) < 1. Then, given t* < 1, Lemma 3.3 and the
right—continuity of G, imply that Gyt) = 1 - [l—Gﬁ(t*)]Ig(t*,t) for
t* <t < L Furthermore, if t* e (0,1}, then Lemmata 3.2 and 3.4 imply
that qﬁ(t*) = 0. Therefore, the lemma will be proved if we can establish
part (i). Note that it is trivially true if q,(0) = 1. Therefore, suppose

qﬁ(O) < 1. Let
t* = inf{v = 0: Gy(v) = lim,..G,(t)}.

We need to show that t’ = 0 when t' > O.

Suppose first that t* = t* > 0. Then the definition of t* implies that,
for some t" < t’, G (t") = lim,, +G_(t). Lemma 3.4 then implies that
lim,;*G,(t) < 1. Combined with Lemma 3.1, this implies that G, (t") =

lim, «G,(t), contradicting the definition of t’.
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Suppose next that 0 < t' < t*. Then, since Lemma 3.4 implies that
G,(t') < 1, it follows from Lemma 3.2 that lim,,,.G,(t) = lim,, +G,(t")
< 1. But then Lemma 3.1 implies that, for some § > 0, G (t'—6§) =
lim , *G_ (t). Applying Lemma 3.1 again then yields G,(t'—8) = lim, »G(t),

contradicting the definition of t’. Q.E.D.

Lemma 3.5 implies that the support of the equilibrium strategies when
neither player moves with probability 1 at time 0 is composed of at most {0}
and an interval [t*,l]. Furthermore, any differences among the equilibrium

strategies of player .4 must occur in the values of either q,(0) or t*.

4. Equilibrium Restrictions at Time 0

In this Section, we consider the equilibrium restrictions on the strategies
at time 0. The possibility for mass points in the equilibrium strategies at time
0 depends on the relation between the return to moving simultaneously and the
return to following at time 0.

We consider first the conditions that are necessary for the existence of an

equilibrium in which one of the players moves immediately. Define
[,(0,0) = lim, [,(0,t)].
LEMMA 4.1: Suppese G,(0) = 1. Then [,(0,0) = 1, and

() q,0) > 0 implies S,(0) > F (0) and S,(0) = F(0).

(i) q40) < 1 implies S,(0) = F,(0);
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PROOF: Suppose G,(0) = 1.
If qﬂ(O) > 0 is an optimal response, then player 8 must not earn a

higher return by waiting an instant:

0 = lim,,P,(t,G,)—P,(0,G,) = F,(0)—S,(0).

Similarly, q,(0) > 0 implies that q,(0) = 1 is an optimal response only if

0 = lim, P (t,G,)—P(0,G;) = q,4(0)[F(0)-S,(0)]

This establishes (i).
i qﬁ(O) < 1, then player g receives the same return from moving at

some t > 0 as from moving immediately:

0 = P,(t,G,)-P,(0,G,) = F,(0)-S,(0).

This establishes (ii).

All that remains is to show that q,(0) = 1 implies 1,(0,0) = 1. Note
first that, whenever F (0) < S,(0), Assumptions Al and A2 imply that F(t)
is bounded away from Lg(t) for small t. This implies that 1,(0,0) = 1. But
if 85,(0) < F,(0), then condition (i) implies that q,(0) = 0. In this case,
therefore, we must be able to construct a mixed strategy for player 8 which
confers no gain to player a from waiting.

Suppose that q4(0) = 0 and P,(t,G;) < P,(0,G;) for t > 0. Then,

for any & > O, there is a t € (0,¢) such that
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But if 1,(0,0) < 1, then, [fdL_/[L,(v)-F,(v)] = « which implies that
lim,,,G,(u) = ». Q.E.D.

The implications of Lemma 4.1 are summarized in Table 1. Typical
elements represent (aq_(0),q,(0)). The value of x is any number in the interval

[0,1).

TABLE 1. Possible Equilibrium Outcomes Where One Player Moves
Immediately

S, (0) < F, (0) S, (0) = F, (0) 5,(0) > F, (0)

S,(0) < F_(0) | (1,00%,¢0,1)° | (0,1),(1,0)" (0,1)
S,(0) = F_(0) | (1,0),¢0,1>" | (1,x).(x,1) (x,1)
s,(0) > F_(0) (1,0) (1,x) (1,1)

“ I 1(0,0) = 1L

¥ 1(0,0) = 1.

The integral condition at time 0, 1,(0,0) = 1, must be satisfied in order to
define a mixed strategy for player 8 which makes player o indifferent to
moving at any time near 0. S8ince 1,(0,0) =1 if F_(0) < L,(0),
Assumption A2 implies that it is always satisfied if F_(0) < S (0). Thus, the
integral condition imposes an additional restriction on the payoffs at time 0
only when S _(0) < F (0).

We consider next the equilibrium restrictions at time 0 for strategy
combinations in which there is a positive probability of the game not ending at

time 0. There are two cases to consider as determined by the value of t*.
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LEMMA 4.2: Suppose t* = 0. Then
@) 100 = L,(00) = 1
(ii) 8,0) > F,(0) implies q,0) = 0.

(i) S,(0) < F,(0) implies q,(0)q,(0) = 0.

PROOF: Condition (i) follows from Lemma 3.3 and the requirement that G,
be right—continuous. To establish conditions (ii) and (iii), note that, if
*

t = 0, the payoffs earned by each player from waiting an instant must be no

less than their payoffs from moving immediately:

(4.1) 0 = lim, (P, (t,G,)—P.(0,G,) = q,(0)[F,(0)-8,(0)}-

If S,0) > F(0), relation (4.1) implies q,(0) = 0. On the other hand, if
8.(0) < F(0) and gq,(0) > 0, then (4.1) must hold with equality, which

again implies that q,(0) = 0. Q.E.D.

The implications of Lemma 4.2 are summarized in Table 2. Typical
elements represent (q,(0),q,(0)). The value of x is any number in the interval

[0,1). If S,(0) < F,(0), then it is assumed that I,(0,0) = 1.

TABLE 2. Possible Initial Mass Points When t*=0

§,(0) < F, (0) §,(0) = F,(0) S_(0) > F,_(0)

8,¢(0) < F, (0) (x,0),(0,x) (0,x), (x,0) (0,x) i
8,(0) = F, (0 (x,0),(0,x) (x,x), (x,x) (0,%)
5,(0) > F, (0 (x,0) (x,0) (0,0)
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LEMMA 4.3: Suppose t* e (0,1). Then either
(1) q,(0) = q,(0) = 0, or
(if) S,(0) > Fy0) and qu0) = [L,(t")~L,(0)]/[Ly(t")—L,(0)+8,(0)—F (0)]

for g = ab.

PROOF: Suppose t* e (0,1). ¥ qg40) = O, then it follows from Lemma 3.5
that player 8 never moves in the interval [0,t]. Therefore, since L, is strictly
increasing, player a receives a higher payoff from moving at time t* than at

time O:
P (+*,G,)-P(0,G,) = L (t")-L(0) > o.

Therefore, q (0) = 0. On the other hand, if q,(0) > O, then player a must

. 1s . . . *
be indifferent between moving at time 0 and time t :

(42) 0 = P(t",G)-P,(0,G)) = q,(0)[F,(0)-8,(0)] + [1-q,(0)][L,(t")-L(0)]-

This implies condition (ii). Q.E.D.

5. Equilibrium Restrictions at Time 1
In this section, we consider the restrictions on the strategies at time 1.

Once again there are two cases to consider as determined by the value of t*.

Define
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I(1,1) = lim,,,I (t,1).

LEMMA 5.1: Suppose t < 1 and I(1,1) = 1.° Then

()  L,(1) = S,(1);
(i) I(1,1) > 0 implies L, (1) = S (1).

PROOF: Suppose tT < 1. Thus, q,(0) < 1 for a =a,b. Then, since G, is
strictly increasing over (t*,l), the payoff to player o from moving just before

time 1 must be at least as large as his payoff from waiting until time 1:
(51) 0= Ptx(l’Gﬁ) - limtflpa(t’Gﬂ) = qﬂ(l)[sa(l)_th(l)]'

If I,(1,1) > O, then Assumption A2 implies that I,(t,1) > 0 for all t
€ (0,1). Tt then follows from Lemma 3.5 that gu(1) = [l—qﬁ(O)]Iﬁ(t*,l) > 0.
Part (i) then follows from equation (5.1).

To establish part (ii), note that, if I(1,1) > 0, then q(1) > 0, which
implies relation (5.1) must hold with equality. This establishes (ii).
Q.E.D.

LEMMA 5.2: Suppose t* =1 and q,(0)q,(0) < 1. Then
(i) S,1)=L,[1), @ = ab, and

() q(1) <1 implies qu1) = [S,(0)—F,(0)}/[S,(1)—L,(0)+8,(0)~F(0)l.

PROOY: Suppose that t* =1 and q.(0) <1 for a = ab. Then it
follows from the Lemma 3.5 that, for e = a,b, q,(1) = 1-q,(0) > 0.

Therefore, the payoff to either player o from moving at time 1 must be at
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least as great as his payoff from moving an instant earlier:

0 = P(1,G,) — lim,,,P(t,G,) = q,(1)[S,(1)-L,(1))-

This establishes (i). Suppose further that q,(1) < 1. Then player o must be

indifferent between moving at times 0 and 1:

0= Pa(l’Gﬁ) - Pa(O,G,e) = [I"Q;a(l)][Fa(O)“Sa(O)] + qﬁ(]‘)[sa(l)_La(O)]'

Rearranging terms yields part (ii). Q.E.D.

Note that Part (ii) of Lemma 5.2 implies that S_(0) > L_(0) for both

players o whenever t* =1 and both q.(1) and q,(1) are less than 1.
Y a b

6. A Complete Characterization of the Equilibria

Using the restrictions derived in Sections 3 to 5, we may completely
characterize the set of equilibria. First, we characterize the "degenerate"
equilibria in which either one of the players moves at time 0 or both wait until
time 1. Next, we characterize the "nondegenerate” equilibria in which the
strategies of both players are increasing over some interval of the game.
We conclude with a statement of the conditions under which at least one .

equilibrium exists.

6.1 Degenerate Equilibria
To facilitate the statement of our results, we distinguish between two

types of degenerate equilibria. Our first theorem characterizes the set of
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equilibria in which one of the players moves with probability 1 at time 0.

- THEOREM 86.1: The following conditions characterize the set of equilibrium
outcomes for which, for some player 8, q,(0) = I:

() 5,(0) < F,(0), ,(00) = 1, and q,(0) = 0;

(i) S,(0) = F,(0), 5,(0) > F,(0), and q,(0) < [0,1];

(i) 8,(0) > F,(0), 8,0) > F,(0), and q,(0) = L.

PROOF: The necessity of conditions (i) to (iii) follows from Lemma 4.1. To
- establish- the sufficiency of these conditions, we need to construct a strategy for
player o such that player g has no incentive not to move with probability 1 at

time 0. Suppose the strategy of player o is defined as

G,(t) = q,(0)+([1-q,(0)][1-L,(0,t]/[1-L(0,1}].

Note that each of the conditions (i) to (iii) imply that I _(0,0) = 1.
Therefore, G, is a continuous, strictly increasing function on [0,1] such that

G,(0) = q(0) and lim,,,G(t) = 1. Then, for t e [0,1],

P,(t,G,)~P,(0,G,)
= q,(0)[F4(0)-Ls(0)] + [G[Fy(v)—Ls(0)dG,(v) + [1-G,(8)][L,(t)-L,(0)]
= q,(0)[F4(0)—L,(0)] — [[1-q,(0)]/[1-L,(0,1)]]
[[SIF 5(v)—Ly(0)ldL,(0,v) — [L(t)~Ly(0)]IL,(0,t)~L,(0,1)]]
= qu(0)[F5(0)—L,(0)] — [[1—q,(0)]/[1~L,(0,1)]]
S5 5(v)—L,(0)dL,(0,v) — L(0,)[Ly(t)—L,(0)]

(integrating by parts)
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= q(0)[F4(0)—Ly(0)] — [[1-q,(0)}/[1-1.(0,1)]]
[JSlF5(v)~Ly(v)]AL,(0,¥) — L(0,v)dL,(v)]
(by the definition of I )

= q,(0)[F,4(0)—L,(0)] =< o.

Therefore, q,(0) = 1 is a best response to G,. It is easy to verify that,

under the conditions (i) to (iii), G, is also a best response to G, Q.E.D.

> 4
Our next theorem defines the set of equilibria in which both players move
with positive probability at time 1, but neither player ever moves in the

interval (0,1).

THEOREM 6.2: The following conditions characterize the equilibria for which
q4(1) = 1-q4(0) > 0 for B = ab.

(i) 8,(1) =L, (1) for o = ab, and q,l) = g(l) = 1;

(i) S, (1) = L,(1), S,(0) > F_(0), and

4p(1) = [S,(0)=F (0)I/[S,(1)=Lo(0)+8,(0)—F,(0)] for & = ab.

PROOF: The necessity of these conditions follow from Lemma 5.2. Sufficiency

is established by inspection. Q.E.D.

If we ignore the nongeneric cases in which either §,(0) = F_(0) or
S,(1) = L_(0), the characterization of the degenerate equilibria may be
summarized reasonably succinctly, If both players earn a higher return at time
1 than leading an instant before, then there is always an equilibrium in which

both players wait until time 1 with probability 1. In addition, if, at time O,
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both players prefer moving simultaneously to following, there is a unique
equilibrium in which both players move at both times 0 and 1 with positive
probability. Otherwise; the only degenerate equilibrium is for at least one .
player to move at time O with probability 1.

The possible degenerate equilibria of this last type also depend on the
properties of the return functions near time 0. If both players prefer to move
simultaneously rather than follow, then there is always a equilibrium in which
both players move immediately with probability 1. Otherwise, one of the
players must wait with probability 1. For such an equilibrium to exist,
however, it must be possible to construct a strategy which puts enough weight
on moving just after time 0 to induce the other player to move immediately.
This requires that the integral condition, 1,(0,0) = 1, be satisfied.

The generic degenerate equilibria are summarized in Table 3. Typical

elements represent (q,(0),q,(0}).

TABLE 3. An Index of the Degenerate Equilibrium Strategies

S, (0) < F, (0) S, (0) > F, (0)
(0,0)° (0,0)°
5,(0) < F,(0) | (1,0)¢,(0,1)° (0,1)°
(0,0)° 0,0)°
$,(0) > F,(0) AL
(1,0)¢ (1,1)

*H S(1) > L(1) for a = a,b.
? yﬂ = [Sa(o)_Fa(O)]/[Sa(l)_Lm(0)+sm(0)_Fa(o)] for ﬂ = &,b.
° K 1,(00) = L

TH L(0,0) = 1.
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6.2 Nondegenerate Equilibria
All that remains is to characterize the equilibria in which at least one of

the players moves with positive probability in the interval (0,1).

THEOREM 6.3: (&) There is an equilibrium such that q,(0)+q (1) < 1 for
some « only if one of the following conditions is satisfied:

@) I,(1,1) = I1(1,1) = 0

(i) I(1,1) =0 and L,(1) = S (1) for some a; or

(ii) L, (1) = S,(1) for a = ab.

(b) If one the conditions of part (a) are satisfied, then, in addition to the
equilibria defined in Theorems 6.1 and 6.2, the strategy combinations defined,

for B = a,b, by

G(t) = 1 ~ [1-q,(O),(t) for t € [t,1)

characterize the set of equilibria under the following restrictions on t, and
(22(0),9,(0)) € [0,1)x[0,1):
(i) 6, € (0,1) and one of the following conditions are satisfied:
(@) q,(0) = q,(0) = 0
(b) S,(0) > F,(0) and
45(0) = [Lalto)—L{0)]/[Ly(0)—Lo(0)+8,(0)—F,(0)] for p = a,b;
(i) t, = 0 and one of the following conditions are satisfied:
(a) S8,(0) <F(0) and I(0,0) =1 for « = a,b, and
4,(0)q,(0) = 0;

(b)  8,(0) = F_(0), S4(0) > F,(0), and q,(0) = 0 for some a;
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(¢) S,0) = F,(0) for a = ab;

PROOF: The necessity of the conditions in part (a) follows from Lemma 5.1.-
The necessity of conditions in part (b) follows from Lemmata 4.2 and 4.3.
The theorem then follows upon verifying that each of these strategy pairs are

best responses. Q.E.D.

Any nondegenerate pair of strategies must satisfy Lemma 3.5. Igoring
the cases in which either S_(0) = F (0} or S, (1) = L,(1), nondegenerate
equilibria exist only-if (i) these strategies imply that both players move with
probability 1 before time 1, or (ii) one player moves with probabilty 1 before
time 1 and prefers his return to leading just before time 1 to his return at
time 1. A necessary condition for player a to move before time 1 with
certainty is that his return to following converge to his return to leading as
time approaches 1.

As long as the terminal conditions at time 1 are satisfied, there is a one
parameter family of nondegenerate equilibria, indexed by the value of t,
(possibly representing two distinct equilibria). Furthermore, unless both players
prefer moving simultaneously to following at time 0, there is also a one
parameter family of equilibria in which the strategies of both players are
strictly increasing throughout the interval [0,1]. These equilibria are indexed by
the probability with which one of the players moves at time 0.

The class of nondegenerate equilibria are summarized in Table 4. As
before, typical elements represent (q,(0),q,(0)). When t, = 0, the table

corresponds to the case where 1(0,0) =1 for o = a,b.
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TABLE 4. An Index of the Nondegenerate Equilibrinm Strategies

S, (0) < F, (0) s, (0) > F, (0)
t, = 0: (x,0),(0,x) t, = 0: (0,%)
$,(0) < F,_(0) t, > 0: (0,0) t, > 0: (0,0)
t, = 0: (x,0) t, = 0: (0,0)
s, (0) > F_(0) t, > 0: (0,0) t, > 0: (0,0),(y,.¥,)°

* q4(0) = [Ly(to) —Ly(0)]/[Ly(66) —Lo(0)45,(0)F,(0)] for g = ab.

6.3 The Existence of Equilibrium
Theorems 6.1 to 6.3 can be combined to yield the following existence

result.

COROLLARY 6.1: An equilibrium exists if and only if one of the following
conditions are satisfied:

(i) 1,(00) =1 for some player a;

(i) S8(1) = L(1) for a = ab; or

(iii) the conditions of theorem 6.3 (a) are satisfied.

Condition (i) of Corollary 6.1 guarantees the existence of a degenerate
equilibrium in which one of the players moves at time 0 with  probability 1.
Condition (ii) guarantees the existence of an equilibrium in which both wait
until time O with probability 1. Condition (iii) guarantees the existence of a
nondegenerate equilibrium.

One important case for which there may be no equilibrium is illustrated

in Figure 1(a). Both the terminal return and the return from following are
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less than the return from leading at time 1, the return from following and
leading are equal at time 0, and the derivative of the return to leading is
positive at time 0. Under these assumptions, it can be shown that I (0,0) =
0 and I (1,1) = 1. It then follows from Lemma 3.5 that in any
nondegenerate equilibrium both players must wait until time 1 with positive
probability. But if S_(1) < L_(1), this cannot be optimal. Consequently, one
of the players must move immediately in equilibrium. Furthermore, since both
players prefer following at time 0 to moving simultaneously, only one player,
say player g, can move immediately. To enforce this behavior, however, it
must be possible to-define a strategy for player-a with enough probability
concentrated near time 0 to induce player § to move immediately which is not
possible since 1(0,0) = 0.

This problem does not arise if the game is formulated in discrete time.
In -this case, there is an equilibrium in which one of the players moves with
certainty in either the first or second period of the game {depending on
whether F_ is increasing or decreasing at 0) and the other player moves with
sufficiently high probability in the following periods to keep the player from
waiting. None of these equilibria correspond to continuous time equilibria,
however, because the strategies converge to a mass point at time 0 as the
discreteness of time is made ever finer. Essentially, the problem is that there
are no "second" or "third" periods in continuous time. (See Hendricks and
Wilson (1985) for a more detailed discussion of this point.)

Gilbert and Harris (1984) resolve the existence problem by essentially
redefining the payoffs when two players move simultaneously. They are
determined as if one of the players, say player b, can observe the action of

player a at any time t before he commits himself to move at that time. In
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the framework of this paper, the effect is to make the return to tying equal to
the return to leading and following at time 0. Consequently, moving
immediately is a best response for both players. Fudenberg and Tirole (1985)
use another approach to solve the existence problem. They enlarge the strategy
space to include "intensity" functions for which the payoffs are defined as if the
players coordinated their moves so that only one player ever moves first. This
enlarged game admits a symmetric equilibrium in which each player earns the

leading (and following) return at time 0.°

7. Applications.-

We conclude with a brief discussion of the relation between our analysis
and the models of the adoption of a new technology mentioned in the
introduction. Return to Figure 1. Each of the three cases corresponds to a
different variation of the adoption game.

Figure 1(a) illlustrates the return functions in the Fudenberg—Tirole
model when the payoffs are symmetric. After an initial interval where the
return to following exceeds the return to leading, the game begins at time 0
where the return to adopting a new technology first equals the return to
following. Time 1 corresponds to the date at which the returns to leading
begin to fall. They suppose that the return to following is strictly less than
the return to leading at this point. However, there are two possibilities for the
value of S (1). Upon reaching period 1, the equilibrium is either for one of the
players to move immediately and the other to follow or for both players to
wait until some later date when the return to joint adoption is even larger. In
the first case, S (1) = L (1) for the leader but Sy(1) = F (1) < L,(1) for

the follower. In the second case, S (1) > L (1) for both players a.
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In the Section 6.3, we argued that because [ (0,0) = 1 in this example,
Theorem 6.1 implies that it can never be an equilibrium for either one of the
players to move immediately. Furthermore, since I (1,1) = 0, Theorems 6.2
and 6.3(a) also imply that there is no mixed strategy equilibria except in the
special case where S (1) = L,(1) for both firms. In general, the only
possibility for equilibrium is for both players to wait until time 1. It exists
only if the returns from delayed joint adoption are no less than the return to
leading at time 1.

The reason why the returns to leading in the Fudenberg—Tirole model
exceed the returns to-following at time 1 is because the optimal response of the
follower to adoption at time 1 is to wait until some time later before adopting.
Hence, the gains to preemption at time 1 are positive. However, it is equally
plausible to suppose that, at some point, the optimal response of a follower is
to adopt an instant later while the returns to leading are still increasing. In
this case, the return to following is equal to the return to leading at time 1.
This is the case illustrated in 1(c). The returns to leading are increasing
throughout, but at time 1, S (1) = L (1) = F (1). If dL_(1)/dt > 0, then
I,(1,1) = 0. In this case, it follows from Theorems 6.2 and 6.3 that there is a
continuum of nondegenerate equilibria in this model as well as a degenerate
equilibrium in which both players wait until time 1.

Figure 1(b) pictures the return functions for a variation on a model

studied by Farell and Saloner.'®

In their model, the adoption of the new
technology leads to a decrease in the flow of profits to both firms. However,
the firm which adopts first suffers a smaller decrease than the follower. These

agsumptions imply that the returns to leading and following are an increasing

function of the date of the first adoption with the return to leading at any t
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exceeding the returns to following. Consequently, even though the firms earn a
lower profit by adopting the new technology, each firm has an incentive to
preempt in order to avoid the losses from being preempted. As the date of
preemption gets large, the returns to leading and following converge to the
returns associated with the outcome in which neither firm ever adopts.

After normalizing time to fit our framework,'? it follows immediately that
F (1) = L(1) = S,(1). Furthermore, it can be shown that lim,,(L;(t)/
[F,(t)-L_(t)] > 0. Consequently, the integral condition, I (1,1) = 0, is
satisfied. It then follows from Theorems 6.2 and 6.3 that there is a degenerate
equilibrium in which neither firm ever adopts and a continuum of
nondegenerate equilibria. The properties of the equilibria in which at least one
of the firms adopts immediately depends on the relation between S,(0) and
F_(0). If the return to following at time 0 exceeds the return to- joint
adoption, then only one firm may move immediately., If the return to
following lies below the return to joint adoption, then, if one firm moves
immediately with positive probability, the other firm must move with positive

probability as well.
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FIGURE 1. Three Possible Patterns for the Return Functions
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Footnotes

! The games are called ™noisy” because the payoff to the follower depends only
on when the other player moves. This reflects the assumption that a player
who plans to wait until time t to move does not have to commit himself to
moving until he has observed the history of the game up to time t.
Consequently, if the other player moves before time t, the first player can react
optimally, independently of what he had planned to do had the other player
not moved at time t. A "silent" game of timing is one in which each player
must commit himself to a time at which he will move independently of the
action of the other at the outset of the game. Reinganum (1981a,b) has
modeled the problem of when to adopt a new technology as a silent game of
timing.

2 This is just a normalization. A game with an infinite horizon can be
,~converted into this.framework by a simple change of variable such as
t = z/(142), where z € [0,).

° It is not essential that F_(1) and L (1) be defined since only return which
can be realized at t = 1 1is S (1). Defining L (t) and F (t) to be continuous -
at 1 merely allows us to identify lim,,,L,(t) with L (1) and lim,,,F_ (t) with

F_(1).

4 Generally, the game is a noisy duel, if, in addition to satisfying Assumption
Al, F_ is assumed to be strictly decreasing and L_ strictly increasing. Since, in
equilibrium, player a will never move at time t unless
F (t) = max{8,(t),L,(t)}, there is little loss in assuming that F (t) < L.(t),
given that we are assuming S (t) < L (t) for t € [0,1].

> By a probability distribution on [t,1], we mean any right-continuous
nondecreasing function G from (—=,©] to [0,1] with G(t) = 0 for t < 0
and G(1) = 1. Throughout this paper, we will adopt the convention that

J#(s)}dG = lim_,, [3f(s)dG.

That is, integral does not include any mass points at times v or t.

®If JeldL,(v)/(Fo(v)=Ly(v))]dGy(v) does not exist, then define

j‘:;[dLa/(Fa_LaJdGa = limt;tuf::l[dLa/(Fa—La]de See footnote 5.

7 1,(0,0) is either 0 or 1. Also, Assumption A2 implies that L(00) =1 if
F,(0) < S (0).
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® 1(1,1) is either 0 or 1.

® It is not clear that their strategies correspond to any Nash equilibrium for
the discrete time analogue with only a finite number of periods. However, one
might interpret their equilibrium as a discrete time correlated equilibrium
(Aumann (1974)) consisting of a mixture of two Nash equilibria in which one
player moves immediately and the other player immediately after.

12 Parrell and Saloner actually suppose that opportunities for adopting a new
technology arrive to each firm according to independent Poisson processes.
Consequently, only one player has the option to lead at the outset of the game
but is uncertain about when the other player will have an option to lead.
Under their assumptions, there is an equilibrium in which the firm adopts
immediately.

"' For example, -if time is denoted by z, let t = z/(z—1).
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